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We derive a current-driven sliding conductivity of the magnetic kink crystal �MKC� in chiral helimagnet
under weak magnetic field applied perpendicular to the helical axis. For this purpose, we discuss the correlated
dynamics of quantum-mechanical itinerant spins and the MKC which are coupled via the sd exchange inter-
action. The itinerant spins are treated as fully quantum-mechanical operators whereas the dynamics of the
MKC is considered within classical Lagrangian formalism. By appropriately treating elementary excitations
around the MKC state, we construct coupled equations of motion for the collective coordinates �the center-of-
mass position and quasi-zero-mode coordinate� associated with the sliding motion of the MKC. By solving
them, we demonstrate that the correlated dynamics is understood through a hierarchy of two time scales:
Boltzmann relaxation time �el, when a nonadiabatic spin-transfer torque appears, and Gilbert damping time
�MKC, when adiabatic spin-transfer torque comes up. As a notable consequence, we found that the terminal
velocity of the sliding motion reverses its sign depending on the band-filling ratio of the conduction electron
system.
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I. INTRODUCTION

Spin textures coupled to spin-polarized electric current
have attracted considerable interest from both theoretical and
experimental viewpoints. For example, current-driven
domain-wall �DW� motion in a ferromagnet by using spin-
polarized current is a main issue in far-reaching field of
spintronics.1–3 From fundamental viewpoints, the main inter-
est lies in nontrivial interference of quantum and semiclassi-
cal dynamics, i.e., linear Hamiltonian dynamics in quantum
system couples with nonlinear dissipative dynamics in clas-
sical system. Recent theoretical studies4–12 have disclosed
mechanisms of spin-transfer-torque �STT� processes in the
current-driven domain-wall motion. According to these
works, the STT consists of two parts, i.e., adiabatic STT,
T1,1,6 and nonadiabatic STT, T2.10 The origin of T1 is under-
stood based on the Döring-Becker-Kittel mechanism of the
domain-wall motion in ferromagnets,13 where the moving
DW accompanies the internal deformation and causes the
spontaneous demagnetization field. On the other hand, the
terminal velocity of a DW is controlled by T2 whose origin is
ascribed to the spatial mistracking between conduction elec-
trons’ spin and local magnetization.10 Behind appearance of
the T2 term is the so-called transverse spin accumulation
�TSA� of itinerant electrons generated by the electric
current.5,11 TSA means the effect where the component of
electron spin vector perpendicular to the local moment ac-
quires finite expectation value.

It is now a natural step to survey wider classes of topo-
logical spin textures other than the domain walls. Actually,
there have emerged interests in the current-driven magneti-
zation dynamics of complex topological spin textures, such
as spin vortex walls,14 spiral spin texture,11 helical spin-
density waves,15,16 and skyrmion lattice.17 One of the best
candidate along this line is a chiral helimagnet. Chiral heli-
magnetic state is characterized by the vector spin chirality as

an order parameter. The structure is stabilized by the anti-
symmetric Dzyaloshinskii-Moriya �DM� interaction18 and re-
alized in crystals without rotoinversion symmetry. Chirality
means that either left-handed or right-handed incommensu-
rate helical spin modulation is selected by the direction of
the DM vector. In the context of Landau theory of phase
transitions, the existence of the Lifshitz invariant in the free
energy justifies the chiral helimagnetic order.19 As shown in
Fig. 1�a�, under the magnetic field applied perpendicular to
the helical axis, the ground state possesses a periodic array of
the commensurate �C� and incommensurate �IC� domains
partitioned by discommensurations, i.e., the internal lattice
which is called magnetic kink crystal �MKC� or sometimes
referred to as chiral soliton lattice19,20 is stabilized. As the
magnetic field strength increases, the spatial period of MKC
lattice, Lkink, increases and finally goes to infinity at the criti-
cal field strength. In this case, the ground state has infinite

FIG. 1. �Color online� �a� MKC state coupled with itinerant
spins via the sd coupling. The magnetic field strength must satisfy
the weak field condition ��c�el�1� discussed in Sec. IV, where �c

is the cyclotron resonance frequency and �el is the Boltzmann re-
laxation time of conduction electrons. �b� The polar coordinates
used here.
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degeneracy associated with arbitrary choice of the center-of-
mass position. Consequently, the translational symmetry
along the helical axis is spontaneously broken. Present au-
thors have discussed physical outcome of the MKC state
from various view points.21–23

From more fundamental viewpoints, the chiral helimagnet
sheds light on two basic notions in condensed-matter phys-
ics, i.e., macroscopic manifestations of the quantum phase
and physical outcome of chirality.24 Both notions have been
separately taken up in various contexts. For example, the
Josephson effect in superconductors and the collective
charge-/spin-density-wave transport in quasi-one-
dimensional �Q1D� systems are typical issue related to the
former subject. The notion of chiralty has more interdiscipli-
nary meaning which covers from geometrical chirality of
molecular structure to spin chirality in frustrated magnets.
However, to directly observe any physical quantity related to
the phase and chirality is not easy, because it is quite non-
trivial to seek for physical field which directly couple with
these degrees of freedom.

Recently, a consistent theory to describe the current-
driven motion of a single Néel wall was given,12 where im-
portance of the so-called quasi-zero-mode coordinate was
stressed. In this paper, along with the same pathway as de-
veloped in Ref. 12, we consider a problem of current-driven
sliding motion of the MKC in a chiral helimagnet coupled to
the spin-polarized current. In Sec. II, we summarize physical
properties of the MKC. In Sec. III, we derive coupled equa-
tions of motion �EOMs� for the collective coordinate of the
center-of-mass motion and the localized quasi-zero-mode co-
ordinate perpendicular to the helical plane. In Sec. IV, we
give microscopic analysis of the conduction electrons under
the electric field. In Sec. V, we derive the sliding conductiv-
ity of the MKC under an applied electric field. Then we
demonstrate that the correlated dynamics is understood
through a hierarchy of two relaxation times, i.e., Boltzmann
relaxation time of conduction electrons, �el, and Gilbert
damping time of the MKC, �MKC. We conclude our results in
Sec. VI.

II. SLIDING MOTION OF THE MKC

In this section we summarize physical properties of the
MKC.21

A. Formation of the MKC state

The MKC formation is described by the effective one-
dimensional Hamiltonian �energy per unit area� in the con-
tinuum limit21

HMKC =
JS2

2a0
�

0

L

dz��zn�z��2 −
S2

a0
2�

0

L

dzD · n�z� � �zn�z�

−
S

a0
3�

0

L

dzH̃ · n�z� . �1�

By “effective one dimension,” we mean that the magnetiza-
tion exhibits no detectable variation in the xy plane over
macroscopic scales. A local spin is described by a semiclas-

sical vector S=Sn which is assumed to be slowly varying
functions of one-dimensional coordinate z. a0 is the cubic
lattice constant of the constituent crystallographic lattice unit
and L denotes the linear dimension of the system. The first
term of Eq. �1� represents the ferromagnetic coupling with
the strength J�0. The second term represents the DM inter-
action between the nearest neighbors,25 characterized by the
monoaxial vector D=Dêz along a certain crystallographic
chiral axis �taken as the z axis� which coincides with the
helical axis. Hamiltonian �1� is the same as the model treated
by Liu26 except that we ignore the single-ion anisotropy en-
ergy. Once we take into account the easy-axis type aniso-
tropy term, −K�i�Si

x�2, the mean-field ground-state configu-
ration becomes either the chiral helimagnet for K�D2 /J or
the Ising ferromagnet for K�D2 /J. In this paper, we assume
K=0 and left an effect of K for a future study. The third term
is the Zeeman coupling with the magnetic field applied per-
pendicular to the chiral axis

H̃ = H̃êx, �2�

where H̃=2�BH ��B is the Bohr magneton and H is an ap-
plied field strength�. In zero field, the long-period incom-
mensurate helimagnetic structure with the modulation wave
number

q0 = a0
−1 arctan�D

J
� 	

D

a0J
, �3�

where �D�J� is stabilized with the definite chirality fixed by
the direction of the monoaxial D vector.

Representing a unit-vector field as

n = �sin 	�z�cos 
�z�,sin 	�z�sin 
�z�,cos 	�z�� �4�

by the polar coordinates 	�z� and 
�z� �Fig. 1�b��, Hamil-
tonian �1� becomes the generalized sine-Gordon Hamiltonian

HMKC =
JS2

a0
�

0

L

dz

�
1

2
	z

2 +
1

2
sin2 	
z

2 − q0 sin2 	
z − m2 sin 	 cos 
� ,

�5�

where the first breather mass m with a physical dimension of
inverse length, �L−1�, is given by

m2 =
H̃

JSa0
2 . �6�

As a stationary configuration which minimizes HMKC, we
obtain the MKC state described by

n0�z� = �cos 
0�z�,sin 
0�z�,0� , �7�

where

cos�
0�z�
2

� = sn�m

�
z� �8�

with “sn” being the Jacobi-sn function. The length
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Lkink =
2�K���

m
�9�

represents the spatial period of the MKC. Hereinafter, K���
and E��� denote the elliptic integrals of the first and second
kinds, respectively, with the elliptic modulus � �0���1�.
The modulus � is determined by minimizing HMKC with re-
spect to � to give

m

�
=

q0

4E���
. �10�

Equations �6� and �10� give the critical field strength

H̃c=JS�q0a0 /4�2, which amounts to 1 kOe for chiral heli-
magnet Cr1/3NbS2.27,28 The incommensurate MKC state is

stabilized for H̃� H̃c. Upon increasing H̃ from zero, the IC-
to-C phase transition from the MKC state to the forced fer-

romagnetic state occurs at H̃= H̃c �corresponding to �=1� at
which Lkink diverges. In the zero-field limit when �=0,
K�0�=E�0�= /2 retrieves Lkink=2 /q0.

B. Elementary excitations, zero mode, and quasizero mode

To consider the sliding motion of the MKC, we should
keep in mind that there is no physical field which has a direct
coupling with the MKC. So, the motion of the MKC requires
internal deformation, i.e., we need information on the el-
ementary excitations. To see this, we introduce the �	�z , t�
�out-of-plane� and �
�z , t� �in-plane� fluctuations of the local
spins around the stationary MKC configuration n0�z�, i.e.,

�z , t�=
0�z�+�
�z , t� and 	�z , t�= /2+�	�z , t�. The terms
“out-of-plane” and “in-plane” are used with respect to the
helical �xy� plane �see Fig. 1�b��. By expanding HMKC up to
the second order with respect to the �	 and �
,
HMKC�	 ,
�=HMKC�	0 ,
0�+�HMKC, we have

�HMKC =� dz��	�̂	�	 + �
�̂
�
� . �11�

Here the linear differential operators are given by

�̂	 = −
JS2

2a0
�z

2 +
H̃S

2a0
3cos 
0 −

JS2

2a0
��z
0�2 +

JS2

a0
q0��z
0� ,

�12a�

�̂
 = −
JS2

2a0
�z

2 +
H̃S

2a0
3cos 
0. �12b�

The eigenvalue problem for these operators corresponds to
the Jacobi form of the Lamé equation. The fluctuations are
spanned by the orthogonal eigenfunctions vq�z� and uq�z�,


�z,t� = 
0�z� + �
q

�q�t�vq�z� , �13�

	�z,t� = /2 + �
q

�q�t�uq�z� , �14�

where �0
Lvq�z�2dz=�0

Luq�z�2dz=1. The time-dependent
eigenmode coordinates �q�t� and �q�t� play role of dynamical

variables. The physical dimension of vq and uq is �L−1/2� and
that of �q and �q is �L1/2�. These functions are all labeled by
the quasimomentum q �Floquet index�. Explicit forms of vq
and uq are given in Ref. 21.

Then, the fluctuation part �HMKC is diagonalized to give

�HMKC = a0
−3�

q

��q
�
��q

2�t� + �q
�	��q

2�t�� , �15�

which describes the MKC phonon modes.23 Both �q
�
� and

�q
�	� comprise the “acoustic” and “optical” bands.29 The

acoustic band is formed out of correlated translations of the
individual kinks while the optical band corresponds to renor-
malized Klein-Gordon bosons. In Fig. 2, the dispersion rela-
tion of �q

�	� is shown.
An essential feature is that the 
 mode is gapless

��0
�
�=0� but the 	 mode acquires an energy gap given by

�0
�	� = JS2a0

2m2

�2 �̄ 	
D2S2

2J
, �16�

where

�̄ = �
0

L

dz��z�u0
2�z� �17�

with

��z� = �8/�E���dn�m

�
z� − 2dn2�m

�
z� . �18�

The presence of this energy gap is essential to produce the
inertial mass of the MKC.21 The normalized wave function at
the bottom of the acoustic band �q=0� is

v0�z� = u0�z� = L−1/2�K���
E���

dn�2K���
Lkink

z�
= L−1/2 2

q0

�K���E����z
0�z� �19�

with “dn” being the Jacobi-dn function. v0�z� and u0�z�, re-
spectively, corresponds to the zero mode and quasizero mode
which are localized around each kink.21 In conventional ter-
minology, the zero mode means a mode excited with no ex-
cess energy. In the present case, the in-plane v0�z� mode
exactly corresponds to this case, but the out-of-plane u0�z�
zero mode acquires the gap given by Eq. �16�. By this rea-
son, we call u0�z�-mode “quasizero mode.”12

FIG. 2. The energy dispersion of the eigenmodes for the out-of-
plane 	-fluctuations ��q

�	��.
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C. Collective coordinates: Quasi-zero-mode and out-of-plane
zero-mode coordinates

In the continuum limit, the MKC configuration has con-
tinuous degeneracy related with a choice of the center-of-
mass position, Z, of the MKC.30 This degeneracy apparently
leads to rigid translation of the MKC, i.e.,

n0�z� → n0�z − Z� . �20�

As shown in Ref. 21, the translation in off-equilibrium
accompanies internal deformation of the MKC which is
analogous to the Döring’s mechanism of the DW motion.13

In order to describe correct local spin dynamics, one has to
regard the parameter Z as a dynamical variable Z�t� and re-
place the zero mode �Nambu-Goldstone� coordinate �0 with
Z�t�.31 Following this procedure, the mode expansions in
Eqs. �13� and �14� are promoted to


�z,t� = 
0�z − Z�t�� + �
q�0

�q�t�vq�z − Z�t�� , �21a�

	�z,t� = /2 + �0�t�u0�z − Z�t�� + �
q�0

�q�t�uq�z − Z�t�� .

�21b�

In these expansions, only the quasizero mode u0 contributes
to the inertial mass of the MKC.21 That is to say, to describe
sliding motion of the MKC, it is enough to include only Z�t�
and �0�t� as dynamical variables �canonical coordinates�.
This treatment is analogous to ignoring the spin-wave con-
tribution in the DW dynamics.12 Based on this fact, we ig-
nore all the terms with finite q in Eqs. �21a� and �21b� and
simply write


�z,t� = 
0�z − Z�t�� , �22a�

	�z,t� = /2 + �0�t�u0�z − Z�t�� . �22b�

Then, Eq. �15� is simplified to give

�HMKC = a0
−3�0

�	��0
2�t� , �23�

These equations are essentially the same as Eqs. �9� and �10�
of Ref. 12. As in the case of DW motion, we naturally in-
clude the out-of-plane quasizero �OPQZ� mode, in addition
to the in-plane �
� zero mode replaced by Z�t�. The zero-
mode wave function u0�z−Z�t�� serves as the basis function
of the 	 fluctuations localized around each kink and �0�t� is
the OPQZ coordinate. Then, our effective theory is fully de-
scribed by two dynamical variables Z�t� and �0�t� which play
a role of physical coordinates along the Hilbert space of the
orthogonal 	 and 
 fluctuations. As shown in Ref. 21, we
have �0�t��0 only for nonequilbrium state where the MKC
exhibits sliding motion. An emergence of such coherent col-
lective transport in nonequilibrium state is a manifestation of
the dynamical off-diagonal long-range order.

III. EQUATIONS OF MOTION OF THE MKC

A. sd interaction

Next, we consider the coupling of the MKC with the itin-
erant quantum spins via the sd coupling described by the
Hamiltonian

Hsd = −
SJsd

a0
3 �

0

L

dzŝ�z� · n�	,
� , �24�

where Jsd represents the sd coupling strength. The electron
spin

ŝ�z� =
1

2
c�

†�z�����c���z� �25�

is fully quantum-mechanical operator with c�
† �c�� being the

electron creation �annihilation� operator and � being the vec-
tor Pauli matrices. Since it is difficult to make quantitative
estimation of Jsd in real materials, we should regard Hamil-
tonian �24� as a working assumption to simulate the interac-
tion between the local spins and itinerant spins.

To understand the effect of the sd coupling, it is useful to
note

n�	,
� 	 �1 −
1

2
�	2�n0 − êz�	 , �26�

where we retain terms appearing in Eqs. �22a� and �22b�.
Plugging this into Eq. �24� and using Eqs. �22a� and �22b�,
we immediately have

Hsd = −
JsdS

a0
3 �F0�Z�t�� −

1

2
F2�Z�t���0

2�t��
+

JsdS

a0
3 F1�Z�t���0�t� , �27�

where

F0�Z�t�� = �
0

L

dz�ŝ�z� · n0�z − Z�t��� , �28a�

F1�Z�t�� = �
0

L

dzŝz�z�u0�z − Z�t�� , �28b�

F2�Z�t�� = �
0

L

dz�ŝ�z� · n0�z − Z�t��� � �u0�z − Z�t���2,

�28c�

which are functions of Z�t�.
We note that at this stage, ŝ�z� is still a quantum-

mechanical operator. When we consider the effective La-
grangian, we need to integrate out electron degrees of free-
dom under an applied electric field. This procedure is
incorporated by replacing s�z� with its statistical average
�s�z��. As we show below, we eventually have �ŝz�z��=0, i.e.,

�F1�Z�t��� = 0. �29�

Therefore, we have
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Hsd = −
JsdS

a0
3 ��F0�Z�t��� −

1

2
�F2�Z�t����0

2� , �30�

where the statistical average over the electron degrees of
freedom is denoted by �¯ �. To compute this average, we
need a nonequilibrium �Keldysh� Green’s function technique
�see Sec. IV�.

B. Lagrangian

To set up EOM, we need a Lagrangian,

L = LB − �HMKC − Hsd, �31�

including kinetic Berry phase term

LB =
�S

a0
3 �

0

L

dz�cos 	 − 1�
t =
�S

a0
3 K�0�t�Ż�t� , �32�

where we used Eqs. �21a� and �21b� and introduced

K = �
0

L

dzu0�z��z
0 	 q0
�L , �33�

under the condition of weak-field limit, ��1. Putting to-
gether Eqs. �23�, �30�, and �32�, we have

S−1a0
3L = �K�0�t�Ż�t� − �0

�	�S−1�0
2�t�

+ Jsd��F0�Z�t��� −
1

2
�F2�Z�t����0

2�t�� . �34�

This Lagrangian has simple physical meaning. The first term
represents the kinetic energy carried by the MKC. The sec-
ond term represents the restoring force by the DM interaction
which acts like an effective easy-plane anisotropy energy.
The third term represents the spin torque transferred from the
itinerant spins to the local moments.

C. Euler-Lagrange-Rayleigh equations of motion

To incorporate the damping effect in the Lagrangian for-
malism, we utilize the Rayleigh dissipation function
W= ���S2 / �2Sa0

3���0
Ldz�dn�z� /dt�2 written as

S−1a0
3W =

��

2
�MŻ2�t� + �̇0

2�t�� , �35�

where

M = �
0

L

dz��z
0�z��2 	 q0
2L . �36�

Using Eqs. �34� and �35�, we write down the Euler-
Lagrange-Rayleigh equations of motion for the variables Z
and �0. We obtain

�K�̇0�t� − Jsd��Z�F0�Z�t���� = − ��MŻ�t� , �37a�

− �KŻ�t� + 2S−1�0
�	��0�t�+ Jsd�F2�Z�t����0�t� = − ���̇0�t� .

�37b�

These EOMs contain only terms linear in the dynamical vari-
ables Z and �0 and are precisely the same as those proposed

in Ref. 21 with modifications by the presence of the sd in-
teraction and the dissipation term.

D. Transversal spin accumulation and nonadiabatic spin-
transfer torque

In Eq. �37a�, there appear the coefficient

�Z�F0�Z�t��� = − �
0

L

dz�ŝ�z� ·
�

�z
n0�z − Z�t��� 	 − q0T2,

�38�

where we used the relation �z
0	q0 and introduced the
nonadiabatic STT on the local moments

T2 = �
0

L

dzêz · �n0�z� � �s�z��� . �39�

The physical dimension of T2 is �L�. It is useful to note that
T2=0 if n0�z� and �s�z�� are parallel to each other. To see
physical meaning of T2, we perform the local gauge transfor-
mation for the conduction-electron creation operator in a
spinor form, c†= �c↓

† ,c↑
†�,

c�z� → a�z� = Û�z�c�z� �40�

with the unitary operator

Û�z� = exp�i�z
0�z�� . �41�

By this transformation, the laboratory frame xyz is trans-
formed to local frame x̄ȳz̄, where the equilibrium local mo-
ment n0�z� points in the direction of x̄ axis �see Fig. 3�.
Consequently, the STT is written as

FIG. 3. �Color online� �a� The nonadiabatic STT, T2, owing to
the TSA �s̄y� along the local ȳ axis, and �b� the adiabatic STT T1

owing to the OPQZA �nz�.

SLIDING CONDUCTIVITY OF A MAGNETIC KINK… PHYSICAL REVIEW B 82, 064407 �2010�

064407-5



T2 =
1

2
�

0

L

dz�a†�z��ya�z�� =
1

2�
k

�ak
†�yak� � L�s̄y� ,

�42�

where a†= �a↑
† ,a↓

†� is the spinor of electron creation operators
and the Fourier transform a�z�=1 /�L�ke

ikzak was intro-
duced. The operator a�z� is dimensionless while ak has a
dimension of �L1/2�.

As indicated in Fig. 3�a�, this means that T2 originates
from the mistracking between the conduction-electron spin
and the spatially varying local moments.10 When the elec-
trons travel along the chiral axis, they see the local moments
continuously rotating over length scales much longer than
the atomic scale. In this process, the electrons cannot in-
stantly follow the background local moments and there arises
accumulation of the component of the electron spin which is
perpendicular to the local moment, i.e., TSA occurs.10 As a
consequence of this process, the local moments feels the
torque T2 and rotate to give the out-of-plane canting
�finite �	�.

E. Longitudinal spin depletion

Next, in Eq. �37b�, there appears the coefficient

�F2�Z�t��� 	 L−1S� , �43�

where we introduced the longitudinal spin depletion �LSD�

S� = �
0

L

dzn0�z� · �s�z�� . �44�

The physical dimension of S� is �L�. Similarly, performing
the gauge transformation Eq. �41�, the LSD is written as

S� =
1

2
�

0

L

dz�a†�z��xa�z�� =
1

2�
k

�ak
†�xak� � L�s̄x� .

�45�

Below, we quantitatively estimate T2 and S� �see Sec. IV C�.
Now, the physical meaning of Eqs. �37a� and �37b� is

clear. In the left-hand side of Eq. �37a� the first term repre-
sents the inertial motion of the MKC. The second term rep-
resents the constant driving force �STT� acting on the MKC.
The right-hand side represents the linear drag effect, which
eventually balance with the driving force given by the STT.
In the left-hand side of Eq. �37b� the first term represents the
linear translation of the MKC as a whole. The second term
represents the restoring force given by the DM interaction.
The third term represents the constant STT.

F. Relaxational dynamics of the MKC

Using Eqs. �33�, �36�, �38�, and �43� the coupled EOMs
�Eqs. �37a� and �37b�� become

�̇0�t� = −
1

��1 + �2����2S−1�0
�	� + JsdL

−1S���0�t� +
Jsd

�L
T2� ,

�46�

Ż�t� =
1

�q0
�L�1 + �2���2S−1�0

�	� + JsdL
−1S���0�t� −

Jsd

�L
�T2� .

�47�

In what follows we neglect the S� contribution, which is
multiplied by the factor 1 /L whereas T2 enters with 1 /�L
�see also discussion given in Sec. IV C and Fig. 6�c��. Let us
switch on the electric field E at t=0 and take the initial
condition �0�0�=0, i.e., the whole MKC is assume to be
static at t=0. Then, Eqs. �46� and �47� are easily solved to
give the relaxation solution

�0�t� = �0
��1 − e−t/�MKC� , �48�

Ż�t� = V��1 − e−t/�MKC� , �49�

where the terminal value of the quasi-zero-mode coordinate
is

�0
� = −

JsdT2

��L�2S−1�0
�	� + JsdL

−1S��
�50�

and the terminal velocity of the MKC is

V� = −
�−1Jsd

�q0L
T2. �51�

The relaxation time is given by

�MKC =
���−1 + ��

2S−1�0
�	� + L−1JsdS�

	
���−1 + ��

SJ
� J

D
�2

, �52�

where L−1JsdS� is negligibly smaller than the energy scale of
�0

�	�. Taking J=10 K	10−22 J, D /J=10−1, �	10−2, and
S=1, we obtain �MKC	10−9 s.

The result in Eq. �50� implies that upon a switching of an
external electric field the TSA, �s̄y�, along the local ȳ axis
appears and creates a spin torque, which causes a precession
of the local magnetic moment around the ȳ axis and conse-
quently produces a finite deviation of the polar angle
�	=	−	0. We call this process OPQZ accumulation
�OPQZA� schematically depicted in Fig. 3�b�. The important
consequence of the OPQZA is an emergence of the finite
out-of-plane �z� component of the local spin

nz�z,t� = cos 	�z,t� 	 − �0
�u0�z − Z�t�� . �53�

This effect is physically similar to an emergence of a demag-
netization field phenomenologically introduced by Döring,13

and Slonczewski.1

The adiabatic spin-transfer torque related with the OPZA
�see Fig. 3�b�� is given by

T1 = �
0

L

dzêy · �n�z� � nz�z�� �54�

and amounts to T1��0
��L in the small-field limit.

By using Eqs. �16� and �50� we obtain the important ratio
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�T1

T2
� �

JJsd

�D2S
. �55�

Given the above estimations the quantity turns out to be of
order 105. One sees that the nonadiabatic spin-transfer torque
is converted into the amplified adiabatic STT. The later en-
ables to push such a heavy macroscopic object as the soliton
lattice is.

It is essential that the Gilbert damping coefficient, �, en-
ters Eq. �52�. The relaxation process of the MKC dynamics is
governed by the Boltzmann relaxation followed by the Gil-
bert damping in hierarchical manner. It is crucial to recog-
nize that the quasi-zero-mode coordinate �0 acquires finite
value �i.e., OPQZA� only for the current flowing state which
is nonequilibrium but stationary. This is the case where dy-
namical relaxation leads to finite accumulation of physical
quantities which are zero in equilibrium. This situation is
totally analogous to the case of a single DW.32

IV. CONDUCTION ELECTRONS

In the previous section, the relaxational solutions are ex-
pressed in terms of T2 and S� given by Eqs. �42� and �45�,
respectively. To compute these quantities, we need to con-
sider the electron degrees of freedom.

A. Magnetic field conditions

We consider relaxational dynamics of conduction elec-
trons under the electric field E=Eêz and magnetic field

H̃= H̃êx. Here we try to fix the weak magnetic field condi-

tion, i.e., mutual relation among E, H̃, and the Boltzmann
relaxation time �el. In the following arguments, we consider
the case where electrons move almost parallel to E and as-
sume that deviation of the orbital motion away from the
direction of E can be neglected. This condition is fulfilled by

�c�el � 1, �56�

where �c=eB /m �B is the magnetic flux density in SI unit�
denotes the electron cyclotron resonance frequency. In the
opposite limit, �c�el�1, cyclotron resonance occurs, which
must be avoided here. In our case, it is appropriate for a
clean metal to assume �el�10−11 s at very low temperature
and �el�10−14 s at room temperatures. Then, the condition
in Eq. �56� is satisfied by

H � 104 – 107 Oe. �57�

Fortunately, this weak field condition is well satisfied be-
cause the critical-field strength Hc usually amounts to atmost
1 kOe. More strictly speaking, we should limit our argument
to the case of H�Hc. Throughout this paper, we use this
criteria as the weak-field condition.

Here we comment on the physical meaning of the weak-
field limit. It is to be stressed that the limit H→0 is never
smoothly connected to the case of H=0. In the case of
H=0 where the background system becomes a simple spiral
state, translational motion of the background does not make
any sense, because apparent translation is nothing more than

global rotation of the whole spiral structure associated with
gauge freedom �or masless Goldstone mode�. So, there is no
analog of our quasizero-mode associated with 	 fluctuations.
In another word, translation and rotation cannot be decou-
pled in a simple spiral state. In the discussion below, we take
H→0 limit to consider conduction electrons. This treatment
may cause unnecessary annoyance that our treatment is not
self-consistent. But, it is important to bear in mind that tak-
ing H→0 limit for conduction electron is totally different
from putting H=0 for the ground state of the background
structure. As shown below, conduction electron produces
torque and the background responds to this with finite inter-
tia. In the case of simple spiral, there is no inertia and the
background responds in singular manner. Only extrinsic pin-
ning �which gives rise to artificial field to fix the gauge� can
rescue this catastrophe.

B. Background MKC, gauge field, and phase shift

For simplicity, we use the one-dimensional �1D� tight-
binding model described by the kinetic term

Hkin = a0
−3�

�

t��
0

L

dzc†�z�c�z + �� + H.c., �58�

where c�
†�c�� are the electron creation �annihilation� opera-

tors with spin �= ↑ ,↓. The hopping integral between adja-
cent sites separated by � is denoted by t�. Since the period of
the MKC �q0

−1	100 nm� is much larger than an electron
wavelength ��0.5 nm�, the MKC is regarded as a very
smooth background for the electrons. Consequently, it is le-
gitimate to ignore reflection of the electrons by the MKC.33

For a description of electron transport in such a slowly vary-
ing magnetization field, it is suitable to represent the electron
degrees of freedom in the rotated local frame x̄ȳz̄ reached
from the crystal frame xyz by the gauge transformation Eq.
�41�.34,35 In the rotated frame, the kinetic energy term in Eq.
�58� acquires the Peierls phase written as

Hkin = a0
−3�

�

t��
0

L

dza†�z�ei/2�z�
0�z�−
0�z+���a�z + �� + H.c.

�59�

Another aspect on t� comes from the condition that the rel-
evant time scales of the electron hopping � / t� should be
much less than that of the slowly varying local moments � /J.
This condition of adiabaticity leads to the necessary require-
ment D�Jsd�J� t�.

Under the condition in Eq. �56�, the wave number k along
z axis is regarded as a good quantum number. Performing the
Fourier transform a�z�=L−1/2�ke

ikzak� and noting


0�z� − 
0�z + �� 	 − q0� , �60�

for small H̃y. Then, Hamiltonian �59� indicates that the trav-

eling electrons see the SU�2� gauge field Âz=−q0��z /2
along the helical axis. Meaning of this gauge field is easily
understood as follows. Let us assume the adiabatic limit
where the itinerant spins perfectly follow the background
local spins. Then, the itinerant spins rotate clockwise or an-

SLIDING CONDUCTIVITY OF A MAGNETIC KINK… PHYSICAL REVIEW B 82, 064407 �2010�

064407-7



ticlockwise depending on the chirality of the helical mag-
netic order. This rotation is interpreted to be caused by the
fictitious magnetic field along the helical axis. This fictitious

field give the gauge field Âz.
Now, we easily diagonalize Hkin to give

Hkin = a0
−3�

k,�
�k�ak�

† ak�, �61�

where

�k� = 2�
�

t� cos
�k −
�

2
q0��� �62�

with �=+ �for ↑� and − �for ↓�. It is important to stress that
the MKC is a periodic background for the itinerant spins
while the DW is a localized one.12 So, the coupling of the
conduction electrons with the MKC simply gives rise to a
phase shift k→k�q0 /2.

C. Microscopic computation of T2 and S¸

The gauge transformation Eq. �41� transforms the sd
Hamiltonian �24� to the form given by

Hsd = −
SJsd

a0
3 �

0

L

dzs̄x�z� , �63�

where s̄x�z�= 1
2a†�z��xa�z�. The local moment n0 is directed

along the local x̄ axis in the rotating frame.
Here we note that by means of exact diagonalization of

the electron Hamiltonian Hel=Hkin+Hsd one can easily
verify that no transversal sy component emerges, i.e., no
nonadiabatic STT arises in an isolated system. To organize a
nonzero spin accumulation an external electric field should
be applied that produces an electric current through the he-
limagnet and creates a nonequilibrium state in the electron
subsystem.

To compute T2 and S�, we exploit the technique of non-
equilbrium Green’s functions.36 A variant of the method
based on equations of motion �EOMs� for Keldysh’s func-
tions developed in Ref. 37 is adequate here. Now, T2 and S�

are, respectively, written as

T2 = L�
k

Re Gk↑,k↓
� �t,t� , �64a�

S� = L�
k

Im Gk↑,k↓
� �t,t� , �64b�

where the lesser component of the path-oriented Green’s
function is defined by

Gk�,k���
� �t,t�� = i�ak���

† �t��ak��t�� , �65�

where t �t�� is defined on the upper �lower� branch of the
Keldysh contour.36

What we need here is the lesser component of the
contour-ordered Green’s function Gk�;k���

� �t , t��. By treating
the sd-interaction Eq. �63� as a perturbation, the Green’s
function is estimated in the lowest order Born approxima-
tion, we obtain

Gk�;k���
� �t,t�� 	 ifk�e−i�k��t−t���kk�����

− i
JsdS

2
� fk�e−i�k��t−t�� − fk��e

−i�k���t−t��

�k�−�k�� − i�
�

��kk�����
x , �66�

where fk� is the distribution function ��=1 /T� for the state
labeled by the wave number k and spin �. It is noted that the
sd interaction gives rise to one-electron spin-flip process to
give off-diagonal matrix elements �ak

†�xak� and �ak
†�yak�.

Then, we have �ak
†�zak�=0 and

T2 =
JsdS

2
L�

k

�fk↑ − fk↓����k↑ − �k↓� , �67�

S� = −
JsdS

2
L�

k

P fk↑ − fk↓

�k↑ − �k↓
. �68�

In Fig. 4, we depict particle-hole process contributing to the
T2.

Here we comment on the condition under which the Born
approximation is valid. As will be discussed in Sec. V B, the
splitting of the conduction bands due to the gauge field
should exceeds the magnitude of Jsd to justify perturbative
treatment of Jsd.

D. Boltzmann approximation

At the final step, we need to obtain an explicit form of the
distribution function fk� in the stationary current-flowing
state. Let switch on the electric field E at t=0. We introduce
the Boltzmann relaxation time �el. We assume that the
deviation from equilibrium Fermi-Dirac distribution
f0��k��= �exp���k�−�� /kBT�+1�−1 is small, where �k�

��= ↑ ,↓� is the single-particle energy and � is the chemical
potential. Following conventional Boltzmann approximation,
we obtain the distribution function

fk� 	 f0��k�� + eE�elvk�

� f0��k��
��k�

, �69�

where the electron charge is −e and the spin-dependent ve-
locity is vk���−1��k� /�k. As discussed below, the spin de-
pendence of �k� originates from the SU�2� gauge fields felt
by the conduction electrons through the spatial modulation
of the MKC. In the process of approaching to stationary

FIG. 4. Feynmann diagram representing the particle-hole polar-
ization accompanying the spin flip caused by the s-d interaction
�represented by wavy line� which leads to the nonadiabatic STT, T2.
The solid line represents the electron/hole one-particle propagation,
wavy line represents the gauge field caused by the background he-
lical texture, and the cross represents the local spin.
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current flowing state around the time t��el, as we will show
explicitly, the statistical average of the conduction electron’s
spin component perpendicular to the local quantization axis,
�s̄y�, accumulates and acquires finite value �Fig. 3�b��. This
process is exactly the TSA. The TSA causes an additional
magnetic field acting on the local moments and exert the
nonadiabatic torque on the local moments. In Fig. 5, we sum-
marize the whole processes of establishing the nonadiabatic
and adiabatic STTs.

V. SLIDING CONDUCTIVITY OF THE MKC

A. General case

Plugging Eq. �69� into Eq. �67�, we have

T2 = �E . �70�

The response coefficient � is given by

� = �0 �
i=1

Ncross Jk0,i

Jk0,i

cosh−2��k0,i

− �

2kBT
� , �71�

where the quantity Jk0,i
defined by

Jk0,i
� vk0,i↑ − vk0,i↓ �72�

is eligible to be called spin current at the band-crossing
point. The special wave-number k0,i is determined by the
condition

�k0,i↑ = �k0,i↓ � �k0,i
. �73�

That is to say, k0,i is the band-crossing point
�i=1, . . . ,Ncross with Ncross being the number of the band-
crossing points in the first Brillouin zone�. It is to be noted
that k0,i appears in the vicinity of the band extrema. So, the
effect is closely related to the Van Hove singularity at which
the density of states diverges. This means that the sliding
conductivity is largely enhanced if the carrier density is ad-
justable to the Van Hove singularity. This situation may hold
even for two- or three-dimensional band structure.

The factor �0 is given by

�0 = −


8
� L2

2
�� JsdS

kBT
� e�el

�
. �74�

Equations �51� and �70� establish relations between the ter-
minal velocity of the MKC and the external electric field E,

V� = �MKCE , �75�

which is the most important result in this paper. The sliding
conductivity of the MKC, �MKC, is given by

�MKC = −
�−1Jsd

�q0L
� . �76�

In the case where only the nearest-neighbor hopping
�t�=−t� is considered, we have k0=0 and  /a0 to give

� = �0
cosh−2��0 − �

2kBT
� − cosh−2��0 + �

2kBT
�� , �77�

where

�0 = 2t cos�q0a0/2� . �78�

Given electron concentration per site 0�n�2, the chemical
potential � is determined from L−1�k�f��k��=n. The depen-
dence of �MKC on the electron concentration n is presented in
Fig. 6�b�. A prominent feature is that �MKC �i.e., the terminal
velocity V�� reverses its sign depending on the free electron
system is less than half filling �n�1� or more than �n�1�
half filling. That is to say, changing the filling ratio cuases
the motion reversal of the translation of the MKC in chiral
helimagnet.

By using a Drude formula for the electric current density,
j= �n0e2�el /m��E with m� being an effective mass of carriers
and n0 being the carrier density, it is possible to make more
concrete estimation of the terminal velocity and we have

V� 	
Sa0L

16�
� m�

ne�2�� J

D
�� Jsd

2

kBT
� j . �79�

As a quantitative estimation, we take Jsd	1 K=10−23 J,
kBT	10 K, �	10−2, S=1, D /J=10−1, n=1028 m−3,
L=10−2 m, and a0=10−10 m. Then, we have V�=102 m /s
for j=108 A /m2. If the chemical potential crosses the band-
crossing point, the velocity becomes resonantly huge. How-
ever, the velocity rapidly decays from V� upon � deviating
from the band-crossing point. So, the estimation given by
Eq. �79� should be regarded as the maximum value of the
terminal velocity.

Finally, we comment on the LSD, S�. In Fig. 6�c� result of
a concentration dependence for

S� =
JsdSL2

16t sin�q0a0/2��−/a0

/a0

dk
fk↑ − fk↓

sin ka0
�80�

is also shown.

B. Band splitting due to gauge field, band crossing, and
motion reversal

In the case of the simplest nearest-neighbor tight-binding
band, we have two crossing points k0,1=0 and k0,2= as

FIG. 5. The whole processes of establishing the nonadiabatic
and adiabatic STTs. After switching on the electric field at t=0, the
inequilibrium process toward the stationary flowing current state
with time scale t	�el�Boltzmann relaxation� causes the finite TSA
�s̄y� and resultant nonadiabatic torque, T2. Then, around the time
scale of t	�el+�MKC �Gilbert relaxation�, the whole system reaches
nonequilibrium but stationary state with the OPQZA �nz� being
established and macroscopic rotation of the DW spins being
realized.
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shown in Fig. 6�a�. At k0,1=0, the spin-up band has a nega-
tive slope while the spin-down bands has a positive slope
and Jk0,1

becomes positive. On the other hand, at k0,2=, the
spin-up band has a positive slope while the spin-down bands
has a negative slope and Jk0,2

becomes negative. This is the
direct reason why the motion reverse occurs upon changing
the chemical potential �. This mechanism of the sign rever-
sal of the conductivity at the band-crossing points holds for
general band structures.

It is to be noted that the spin up and spin down are re-
ferred to with respect to the z axis in the laboratory frame.
Then, the conduction electrons see periodic internal gauge
field �period 2 /q0� coming from the background helical
magnetic structures. The band splitting is then ascribed to the
difference in the phase shifts k→k�q0 /2 acquired by the
spin-up and spin-down electrons.

C. Band structure in helical crystal

Finally, we consider more realistic band structure with
keeping Cr1/3NbS2 in mind. This crystal belongs to the space
group P6322. However, applied electric field violates vertical
twofold rotational symmetry. Consequently, the space group
6322 is degraded to its subgroup 63. In the case of Q1D, this
subgroup corresponds to the line group L� 63. The band struc-

tures in Q1D systems were extensively studied by Božović38

and the case of L� 63 gives the dispersion relation

�k,� = − t cos�ka0/2 + 2�/6� + �0,�,

where �=0, �1, �2,3 are “quasi-angular-momentum”
indices. Here, a0 is the crystallographic lattice constant. We
repeat the same procedure presented before and obtained the
sliding conductivity for this case. We summarize the results
in Fig. 7. In this case, the band extrema occur at

FIG. 6. �a� Band-crossings of spin-dependent bands. The cross-
ing points are marked by circles with the sign inside them. The sign
means positive or negative contributions to Jk0,i

. �b� The sliding
conductivity �MKC as a function of the carrier deinsity n. �MKC

� is
the maximum value of �MKC. �c� LSD S� as a function of the carrier
density n.

FIG. 7. �a� Symmetry-adapted energy band structure for the case
of line group L� 63. The quasiangular-momentum �=0, �1, �2,3
are indicated. We choose �0,0= t and �0,�1=4t. �b� Band crossings
of spin-dependent bands. The crossing points are marked by circles
with the sign inside them. The sign means positive or negative
contributions to Jk0,i

. �c� The sliding conductivity �MKC as a func-
tion of the carrier density n. �MKC

� is the maximum value of �MKC.
Quasi-angular-momentum indices are shown for the corresponding
peaks.
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k=0, �2 /3a0, and  /a0. Correspondingly, we have four
peaks of �MKC as a function of the carrier concentration.

VI. CONCLUDING REMARKS

In this paper, we developed a consistent theory to describe
the sliding motion of the MKC in terms of correlated dynam-
ics of quantum-mechanical itinerant spins and semiclassical
local moments. The most important result is given by Eqs.
�75� and �76�. We considered the itinerant spins as quantum-
mechanical operators whereas local moments are considered
within classical Lagrangian formalism. By appropriately
treating fluctuations space spanned by basis functions, in-
cluding a quasi-zero-mode wave function, we construct
coupled equations of motion for the collective coordinate of
the center-of-mass motion and the localized zero-mode coor-
dinate perpendicular to the domain-wall plane. By solving
them, we demonstrate that the correlated dynamics is under-
stood through a hierarchy of two time scales: Boltzmann
relaxation time �el, when a nonadiabatic part of the spin-
transfer torque, T2, appears, and Gilbert damping time �MKC,
when adiabatic part, T1, comes up.

Now, the appearance of the nonadiabatic spin-transfer-
torque is understood as follows. Once the electric field is
switched on, electrons rapidly travel over the MKC and relax
to the stationary state after the Boltzmann relaxation time �el.
During this process, they cannot instantly follow the back-
ground MKC. This mistracking causes the TSA of the itiner-
ant spin along the local ȳ axis, �s̄y�. Appearance of this off-
diagonal expectation value is justified by the spin-flipping
process caused by the sd interaction. The TSA creates the
nonadiabatic torque, T2, on the local moments. Microscopi-
cally, the background MKC causes gauge field acting on the
itinerant spins and lifts the degeneracy between spin-up and
spin-down bands. Because of this band splitting, the spin

current Jk0
naturally comes up and gives rise to stationary

torque on the local moments.
Once the TSA is established, the local spins rotate around

the local ȳ axis by the nonadiabatic torque and finally relax
to a new stationary state after the time scale of the Gilbert
relaxation of the MKC state, �MKC. Then, the out-of-plane �z�
component of the local moments accumulates. This accumu-
lation is referred to as OPQZA which causes the adiabatic
torque, T1, �Döring mechanism13� on the local moments and
leads to the stationary motion of the whole MKC. Because of
this mechanism, the sliding motion of the MKC accompanies
the transport magnetic current, which is detectable in
experiments.21

As for candidate to test our prediction, the metallic chiral
helimagnet Cr1/3NbS2 �Refs. 27 and 28� may be promising,
because this material contains itinerant and localized species
of spins, respectively, coming from the partially filled d sub-
band of Nb and the filled d levels of Cr3+ giving local spin
S=5 /2. Metallic chiral helimagnet MnSi may also be an eli-
gible candidate. To make more plausible connection between
the present theory and experiments, details of the interaction
between localized and itinerant species of spins should be
clarified. A guiding principle for materializing this effect is
symmetry-adapted material synthesis �as exemplified in Sec.
V C�, because the chiral helimagnetic structure is stabilized
only in materials without rotoinversion symmetry, i.e., the
interplay of crystallographic and magnetic chirality plays a
key role there. We hope our finding opens a new field of
spintronics based on the crystal structure engineering.
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